(1) Use the Euclidean algorithm to find gcd(451, 369). (10 points)

(2) Let \(a, b, c \in \mathbb{Z} \). Show that
(a) \(\gcd(ab, c) \mid \gcd(a, c) \gcd(b, c) \);
(b) \(\gcd(ab, c) = \gcd(a, c) \gcd(b, c) \) if \(a \perp b \). (10+10 points)

(3) Let \(m, n \geq 0 \). Show that \(\gcd(2^m - 1, 2^n - 1) = 2^{\gcd(m,n)} - 1 \).
Hint. Assuming \(m \geq n \), show that \(\gcd(2^m - 1, 2^n - 1) = \gcd(2^{m-n} - 1, 2^n - 1) \). (20 points)

(4) Let \(F_n = 2^{2^n} + 1, n \geq 0 \), be the \(n \)th Fermat number. Show that the Fermat numbers are coprime in pairs, and deduce that there are infinitely many primes.
Hint. If \(m < n \), then \(F_m \mid F_n - 2 \). (20 points)

(5) (a) Assume that \(a > b > 0 \). Prove that the Euclidean Algorithm finds \(\gcd(a, b) \) after at most \(1 + C \log b \) iterations of the loop, where \(C \) is some real number.
Hint. Consider two iterations at a time.
(b) Bonus Problem
Find the best possible constant \(C \) when \(b \to \infty \): determine
\[
\limsup_{b \to \infty} \frac{C(b)}{\log b}
\]
where \(C(b) \) is the maximal number of iterations required to compute \(\gcd(a, b) \)
for some \(a \). (20+15 points)

(6) Let \(a, b \) be positive coprime integers.
(a) Show that any sufficiently large integer \(n \) can be written as \(n = ax + by \)
with nonnegative integers \(x \) and \(y \).
(b) Bonus Problem
What is the largest \(n \) that \(cannot \) be represented in this way? (10+15 points)